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A PIOP for R1CS



R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)



What checks do we need?
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Step 2: Correct matrix-vector multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]



PIOP for Hadamard Product
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Prover  
1. Let  be a set of size . 
2. Interpolate  to get . 

3. Run PIOP for zerocheck for polynomial 
. 

 

(F, x, w)
H ⊆ 𝔽 n

zA, zB, zC pA, pB, pC

pA ⋅ pB − pC

Verifier  
 
 

Run PIOP verifier for 
zerocheck for 

polynomial 
. 

 

(F, x)

pA ⋅ pB − pC

pA pB pC



Next point: PIOP for MV checks
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Prover  
1. Compute  
2. Interpolate  over  to get  

 

3. Interpolate  to get   
4. Invoke sumcheck PIOP prover on   

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

Verifier  

1.  
2.  
3. Interpolate  to get  

 

4. Invoke sumcheck PIOP verifier on   

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X ) ̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )



Why is the verifier slow?
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Prover  
1. Compute  
2. Interpolate  over  to get  

 

3. Interpolate  to get   
4. Invoke sumcheck PIOP prover on   

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

Verifier  

1.  
2.  
3. Interpolate  to get  

 

4. Invoke sumcheck PIOP verifier on   

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X ) ̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )
To check this, it 
must evaluate 

 and ̂r(X ) ̂rM(X )

Must compute 
!⃗r⊤ ⋅ M



Sublinear verification for 
PIOP-based SNARKs



Holographic PIOPs [CHMMVW20, COS20]
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Indexer Function F pF

Prover 
 

 
 
 
 

(F, x, w)
Verifier 

 
 
 
 
 

x
r1

…
QueryQ

Decisionb

rt

p1

pt

Introduce a new algorithm to preprocess the matrices

Verifier does not 
read F, and so 

can be sublinear!
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𝖵(𝖼𝗏𝗄, x) 
 
 
 
 
 

𝖯(𝖼𝗉𝗄, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, N) 
 
 
 

max size S
(ck, vk)

PIOP(N) 

output universal parameters pp = (ck, vk) 

PC.SETUP(S) 

Holographic PIOPs + PC Schemes → Preprocessing SNARKs 

+ Fiat—Shamir to get non-interactivity

INDEX(pp, F) 
 
 
 
 

 oraclesF

cmF

PIOP.INDEXER(F)

prover key cpk = (ck, F) 
verifier key cvk = (vk, cmF)output circuit 

PC.COMMIT 

Prover answers queries to  oracles tooF



Verifier Complexity of Holographic PIOP-based SNARKs
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Holography enables sublinear verification for  
arbitrary circuits computations!

T(SNARK.V) = T(CHECK) + T(HIOP.V)

Now sublinear!



Holographic PIOP for 
R1CS



Why is the verifier slow?
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Prover  
1. Compute  
2. Interpolate  over  to get  

 

3. Interpolate  to get   
4. Invoke sumcheck PIOP prover on   

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

Verifier  

1.  
2.  
3. Interpolate  to get  

 

4. Invoke sumcheck PIOP verifier on   

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X ) ̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )
α

Sumcheck

To check this, it 
must evaluate 

 and ̂r(α) ̂rM(α)

Must compute 
!⃗r⊤ ⋅ M



Step 1: Efficient ̂r(X)
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Can write  as ̂r(X ) ∑
i∈H

ri ⋅ Li
H(X )

Efficiently evaluating this at a random point  
requires efficiently computing each  and 

β
ri Li

H(β)

Let’s interpret this as ∑
i∈H

Yi ⋅ Li
H(X )

Monomial basis Lagrange basis



Step 1: Efficient ̂r(X)
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1. Replace Monomial with Lagrange basis 

2. Can rewrite this as 

This can be evaluated in time !

∑
i∈H

Li
H(Y ) ⋅ Li

H(X )

vH(Y )X − vH(X )Y
|H | (X − Y )

O(log |H | )



Why is the verifier slow?

16

Prover  
1. Compute  
2. Interpolate  over  to get  

 

3. Interpolate  to get   
4. Invoke sumcheck PIOP prover on   

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

Verifier  

1.  
2.  
3. Interpolate  to get  

 

4. Invoke sumcheck PIOP verifier on   

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X ) ̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )

V can efficiently 
evaluate ; what 
about  ?

̂r(α)
̂rM(α)

α

Sumcheck
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For all ,  . 

 
So, therefore the interpolation looks like , and so 

 

This is yet another sumcheck, so we engage in another sumcheck PIOP, which 
will eventually result in requiring an evaluation , where  is random 

 
How to evaluate ?

j ∈ H ̂rM( j) = ∑
i∈H

̂r(i) ⋅ M̂(i, j)

̂rM(X) = ∑
i∈H

̂r(i) ⋅ M̂(i, X)

̂rM(α) = ∑
i∈H

̂r(i) ⋅ M̂(i, α)

M̂(β, α) β

M̂(β, α)



How to encode matrix?
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Polynomial Interpolation of Lists:  
Given a list , and a set , the interpolation of  over  is A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y )

Problem: computing this requires  workO( |H |2 )



Insight: The matrices are sparse!
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Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y )

Most  are zero!Mij

Can rewrite as ,  

Additionally, sum only over non-zero entries!

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅
vH(X )
X − i

⋅
vH(Y )
Y − j



Final Matrix Encoding
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Let  be the number of non-zero entries, and  be a subset of size . 
Then, a sparse bivariate interpolation of  over  is 

m K ⊂ 𝔽 m
A K

M̂(X, Y ) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y )
Y − 𝖼(k)

Value of -th non-
zero entry

k Row-index of -th 
non-zero entry

k Col-index of -th 
non-zero entry

kActually, we need polynomials, so we will replace  with their 
interpolations over , i.e.  

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y )
Y − ̂𝖼(k)



Final Matrix Encoding
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Let  be the number of non-zero entries, and  be a subset of size . 
Then, a sparse bivariate interpolation of  over  is 

m K ⊂ 𝔽 m
A K

M̂(X, Y ) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y )
Y − 𝖼(k)

Actually, we need polynomials, so we will replace  with their 
interpolations over , i.e.  

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y )
Y − ̂𝖼(k)

Q: How to do this sumcheck?  
 
This is a rational function! 
 
We only know how to do 
sumcheck for polynomials!



Final Matrix Encoding
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Let  be the number of non-zero entries, and  be a subset of size . 
Then, a sparse bivariate interpolation of  over  is 

m K ⊂ 𝔽 m
A K

M̂(X, Y ) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y )
Y − 𝖼(k)

Actually, we need polynomials, so we will replace  with their 
interpolations over , i.e.  

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y )
Y − ̂𝖼(k)

Q: How to do this sumcheck?  
 
This is a rational function! 
 
We only know how to do 
sumcheck for polynomials!



Final Matrix Encoding
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Let  be the number of non-zero entries, and  be a subset of size . 
Then, a sparse bivariate interpolation of  over  is 

m K ⊂ 𝔽 m
A K

M̂(X, Y ) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y )
Y − 𝖼(k)

Actually, we need polynomials, so we will replace  with their 
interpolations over , i.e.  

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y )
Y − ̂𝖼(k)

A: interpolate into a 
polynomial!



Rational → Polynomial
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Key point: just like for other functions, here we 

just care about behavior of  over 
vH(X)

X − ̂𝗋(k)
H

So we will replace with an interpolation , and  
 
1. Perform sumcheck with , and  

2. Check that  over . 

p

p

p −
vH(X)

X − ̂𝗋(k)
= 0 H



What to do for multilinear case?
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Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ eq(i, X) ⋅ eq( j, Y )

Most  are zero!Mij

Cannot rewrite as  ! M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅
vH(X )
X − i

⋅
vH(Y )
Y − j



We can still try to exploit sparsity!
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Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈K

Mk ⋅ eq(i, 𝗋(k)) ⋅ eq( j, 𝖼(k))



Final Matrix Encoding
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Let  be the number of non-zero entries, and  be a subset of size . 
Then, a sparse bivariate interpolation of  over  is 

m K ⊂ 𝔽 m
A K

M̂(X, Y ) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y )
Y − 𝖼(k)

Value of -th non-
zero entry

k Row-index of -th 
non-zero entry

k Col-index of -th 
non-zero entry

kActually, we need polynomials, so we will replace  with their 
interpolations over , i.e.  

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y )
Y − ̂𝖼(k)


