
Pratyush Mishra
UPenn
Fall 2025

Succinct Arguments

Lecture 05:  
Holographic PIOP for R1CS

A PIOP for R1CS

R1CS

3

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)

What checks do we need?

4

Step 2: Correct matrix-vector multiplication
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each , i zA[i] ⋅ zB[i] = zC[i]

PIOP for Hadamard Product

5

Prover
1. Let be a set of size .
2. Interpolate to get .

3. Run PIOP for zerocheck for polynomial
.

(F, x, w)
H ⊆ 𝔽 n

zA, zB, zC pA, pB, pC

pA ⋅ pB − pC

Verifier

Run PIOP verifier for
zerocheck for

polynomial
.

(F, x)

pA ⋅ pB − pC

pA pB pC

Next point: PIOP for MV checks

6

Prover
1. Compute
2. Interpolate over to get

3. Interpolate to get
4. Invoke sumcheck PIOP prover on

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

Verifier

1.
2.
3. Interpolate to get

4. Invoke sumcheck PIOP verifier on

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X) ̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)

Why is the verifier slow?

7

Prover
1. Compute
2. Interpolate over to get

3. Interpolate to get
4. Invoke sumcheck PIOP prover on

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

Verifier

1.
2.
3. Interpolate to get

4. Invoke sumcheck PIOP verifier on

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X) ̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)
To check this, it
must evaluate

 and ̂r(X) ̂rM(X)

Must compute
!⃗r⊤ ⋅ M

Sublinear verification for
PIOP-based SNARKs

Holographic PIOPs [CHMMVW20, COS20]

9

Indexer Function F pF

Prover

(F, x, w)
Verifier

x
r1

…
QueryQ

Decisionb

rt

p1

pt

Introduce a new algorithm to preprocess the matrices

Verifier does not
read F, and so

can be sublinear!

10

𝖵(𝖼𝗏𝗄, x)

𝖯(𝖼𝗉𝗄, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, N)

max size S
(ck, vk)

PIOP(N)

output universal parameters pp = (ck, vk)

PC.SETUP(S)

Holographic PIOPs + PC Schemes → Preprocessing SNARKs

+ Fiat—Shamir to get non-interactivity

INDEX(pp, F)

 oraclesF

cmF

PIOP.INDEXER(F)

prover key cpk = (ck, F) 
verifier key cvk = (vk, cmF)output circuit

PC.COMMIT

Prover answers queries to oracles tooF

Verifier Complexity of Holographic PIOP-based SNARKs

11

Holography enables sublinear verification for
arbitrary circuits computations!

T(SNARK.V) = T(CHECK) + T(HIOP.V)

Now sublinear!

Holographic PIOP for
R1CS

Why is the verifier slow?

13

Prover
1. Compute
2. Interpolate over to get

3. Interpolate to get
4. Invoke sumcheck PIOP prover on

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

Verifier

1.
2.
3. Interpolate to get

4. Invoke sumcheck PIOP verifier on

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X) ̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)
α

Sumcheck

To check this, it
must evaluate

 and ̂r(α) ̂rM(α)

Must compute
!⃗r⊤ ⋅ M

Step 1: Efficient ̂r(X)

14

Can write as ̂r(X) ∑
i∈H

ri ⋅ Li
H(X)

Efficiently evaluating this at a random point
requires efficiently computing each and

β
ri Li

H(β)

Let’s interpret this as ∑
i∈H

Yi ⋅ Li
H(X)

Monomial basis Lagrange basis

Step 1: Efficient ̂r(X)

15

1. Replace Monomial with Lagrange basis

2. Can rewrite this as

This can be evaluated in time !

∑
i∈H

Li
H(Y) ⋅ Li

H(X)

vH(Y)X − vH(X)Y
|H | (X − Y)

O(log |H |)

Why is the verifier slow?

16

Prover
1. Compute
2. Interpolate over to get

3. Interpolate to get
4. Invoke sumcheck PIOP prover on

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

Verifier

1.
2.
3. Interpolate to get

4. Invoke sumcheck PIOP verifier on

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X) ̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)

V can efficiently
evaluate ; what
about ?

̂r(α)
̂rM(α)

α

Sumcheck

17

For all , .

So, therefore the interpolation looks like , and so

This is yet another sumcheck, so we engage in another sumcheck PIOP, which
will eventually result in requiring an evaluation , where is random

How to evaluate ?

j ∈ H ̂rM(j) = ∑
i∈H

̂r(i) ⋅ M̂(i, j)

̂rM(X) = ∑
i∈H

̂r(i) ⋅ M̂(i, X)

̂rM(α) = ∑
i∈H

̂r(i) ⋅ M̂(i, α)

M̂(β, α) β

M̂(β, α)

How to encode matrix?

18

Polynomial Interpolation of Lists:
Given a list , and a set , the interpolation of over is A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Polynomial Interpolation of Matrices?:
Given a list , and a set , the bivariate interpolation of over is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y)

Problem: computing this requires workO(|H |2)

Insight: The matrices are sparse!

19

Polynomial Interpolation of Matrices?:
Given a list , and a set , the bivariate interpolation of over is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y)

Most are zero!Mij

Can rewrite as ,  

Additionally, sum only over non-zero entries!

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅
vH(X)
X − i

⋅
vH(Y)
Y − j

Final Matrix Encoding

20

Let be the number of non-zero entries, and be a subset of size .
Then, a sparse bivariate interpolation of over is

m K ⊂ 𝔽 m
A K

M̂(X, Y) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y)
Y − 𝖼(k)

Value of -th non-
zero entry

k Row-index of -th
non-zero entry

k Col-index of -th
non-zero entry

kActually, we need polynomials, so we will replace with their
interpolations over , i.e.

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y)
Y − ̂𝖼(k)

Final Matrix Encoding

21

Let be the number of non-zero entries, and be a subset of size .
Then, a sparse bivariate interpolation of over is

m K ⊂ 𝔽 m
A K

M̂(X, Y) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y)
Y − 𝖼(k)

Actually, we need polynomials, so we will replace with their
interpolations over , i.e.

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y)
Y − ̂𝖼(k)

Q: How to do this sumcheck?  
 
This is a rational function! 
 
We only know how to do
sumcheck for polynomials!

Final Matrix Encoding

22

Let be the number of non-zero entries, and be a subset of size .
Then, a sparse bivariate interpolation of over is

m K ⊂ 𝔽 m
A K

M̂(X, Y) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y)
Y − 𝖼(k)

Actually, we need polynomials, so we will replace with their
interpolations over , i.e.

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y)
Y − ̂𝖼(k)

Q: How to do this sumcheck?  
 
This is a rational function! 
 
We only know how to do
sumcheck for polynomials!

Final Matrix Encoding

23

Let be the number of non-zero entries, and be a subset of size .
Then, a sparse bivariate interpolation of over is

m K ⊂ 𝔽 m
A K

M̂(X, Y) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y)
Y − 𝖼(k)

Actually, we need polynomials, so we will replace with their
interpolations over , i.e.

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y)
Y − ̂𝖼(k)

A: interpolate into a
polynomial!

Rational → Polynomial

24

Key point: just like for other functions, here we

just care about behavior of over
vH(X)

X − ̂𝗋(k)
H

So we will replace with an interpolation , and

1. Perform sumcheck with , and

2. Check that over .

p

p

p −
vH(X)

X − ̂𝗋(k)
= 0 H

What to do for multilinear case?

25

Polynomial Interpolation of Matrices?:
Given a list , and a set , the bivariate interpolation of over is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ eq(i, X) ⋅ eq(j, Y)

Most are zero!Mij

Cannot rewrite as ! M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅
vH(X)
X − i

⋅
vH(Y)
Y − j

We can still try to exploit sparsity!

26

Polynomial Interpolation of Matrices?:
Given a list , and a set , the bivariate interpolation of over is M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈K

Mk ⋅ eq(i, 𝗋(k)) ⋅ eq(j, 𝖼(k))

Final Matrix Encoding

27

Let be the number of non-zero entries, and be a subset of size .
Then, a sparse bivariate interpolation of over is

m K ⊂ 𝔽 m
A K

M̂(X, Y) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y)
Y − 𝖼(k)

Value of -th non-
zero entry

k Row-index of -th
non-zero entry

k Col-index of -th
non-zero entry

kActually, we need polynomials, so we will replace with their
interpolations over , i.e.

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y)
Y − ̂𝖼(k)

