Succinct Arguments

Lecture 05: Holographic PIOP for R1CS

A PIOP for R1CS

R₁CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$(F := (\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)$$

$$z \coloneqq \begin{bmatrix} x \\ w \end{bmatrix} \ \ \mathbf{A} \begin{bmatrix} A \\ Z \end{bmatrix} \circ \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} C \\ z \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$$

What checks do we need?

Step 1: Correct Hadamard product

check that for each i, $z_A[i] \cdot z_B[i] = z_C[i]$

Step 2: Correct matrix-vector multiplication

check that $Mz = z_M \ \forall M \in \{A, B, C\}$

PIOP for Hadamard Product

Prover(F, x, w)

- 1. Let $H \subseteq \mathbb{F}$ be a set of size n.
- 2. Interpolate z_A , z_B , z_C to get p_A , p_B , p_C .
- 3. Run PIOP for zerocheck for polynomial $p_A \cdot p_B p_C$.

Next point: PIOP for MV checks

Prover(M, z)

- 1. Compute $z_M := Mz$
- 2. Interpolate z_M over H to get \hat{z}_M

- 3. Interpolate $(\vec{r}, \vec{r}^T M)$ to get (\hat{r}, \hat{r}_M)
- 4. Invoke sumcheck PIOP prover on

$$\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X)$$

- $1. r \stackrel{\$}{\leftarrow} \mathbb{F}$
- $\vec{r} := (1, r, ..., r^{n-1})$
- 3. Interpolate $(\vec{r}, \vec{r}^T M)$ to get (\hat{r}, \hat{r}_M)

4. Invoke sumcheck PIOP verifier on

$$\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X)$$

Why is the verifier slow?

Sublinear verification for PIOP-based SNARKs

Holographic PIOPs [CHMMVW20, COS20]

Introduce a new algorithm to preprocess the matrices

Holographic PIOPs + PC Schemes → Preprocessing SNARKs

Verifier Complexity of Holographic PIOP-based SNARKs

$$T(SNARK.V) = T(CHECK) + T(HIOP.V)$$

Now sublinear!

Holography enables sublinear verification for arbitrary circuits computations!

Holographic PIOP for R1CS

Why is the verifier slow?

Step 1: Efficient $\hat{r}(X)$

Can write
$$\hat{r}(X)$$
 as $\sum_{i \in H} r^i \cdot L_H^i(X)$

Efficiently evaluating this at a random point β requires efficiently computing each r^i and $L_H^i(\beta)$

Step 1: Efficient $\hat{r}(X)$

1. Replace Monomial with Lagrange basis $\sum_{i \in H} L_H^i(Y) \cdot L_H^i(X)$

2. Can rewrite this as
$$\frac{v_H(Y)X - v_H(X)Y}{|H|(X-Y)}$$

This can be evaluated in time $O(\log |H|)!$

Why is the verifier slow?

- 1. Compute $z_M := Mz$
- 2. Interpolate z_M over H to get \hat{z}_M
- 3. Interpolate $(\vec{r}, \vec{r}^{\mathsf{T}}M)$ to get (\hat{r}, \hat{r}_{M})
- 4. Invoke sumcheck PIOP prover on

 $\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X)$

V can efficiently evaluate $\hat{r}(\alpha)$; what about $\hat{r}_{M}(\alpha)$?

Sumcheck

- \Rightarrow 2. $\vec{r} := (1, r, ..., r^{n-1})$
- 3. Interpolate $(\vec{r}, \vec{r}^T M)$ to get (\hat{r}, \hat{r}_M)
- 4. Invoke sumcheck PIOP verifier on

$$\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X)$$

For all
$$j \in H$$
, $\hat{r}_M(j) = \sum_{i \in H} \hat{r}(i) \cdot \hat{M}(i,j)$.

So, therefore the interpolation looks like $\hat{r}_M(X) = \sum_{i \in H} \hat{r}(i) \cdot \hat{M}(i,X)$, and so

$$\hat{r}_{M}(\alpha) = \sum_{i \in H} \hat{r}(i) \cdot \hat{M}(i, \alpha)$$

This is yet another sumcheck, so we engage in another sumcheck PIOP, which will eventually result in requiring an evaluation $\hat{M}(\beta, \alpha)$, where β is random

How to evaluate $\hat{M}(\beta, \alpha)$?

How to encode matrix?

Polynomial Interpolation of Lists:

Given a list $A=(a_0,\ldots,a_d)$, and a set $H\subseteq \mathbb{F}$, the interpolation of A over H is $\hat{a}(X):=\sum a_i\cdot L_H^i(X)$

Polynomial Interpolation of Matrices?:

Given a list $M \in \mathbb{F}^{n \times n}$, and a set $H \subseteq \mathbb{F}$, the bivariate interpolation of A over H is

$$\hat{M}(X,Y) := \sum_{i \in H} \sum_{j \in H} M_{ij} \cdot L_H^i(X) \cdot L_H^j(Y)$$

Problem: computing this requires $O(|H|^2)$ work

Insight: The matrices are sparse!

Polynomial Interpolation of Matrices?:

Given a list $M \in \mathbb{F}^{n \times n}$, and a set $H \subseteq \mathbb{F}$, the bivariate interpolation of A over H is

$$\hat{M}(X,Y) := \sum_{i \in H} \sum_{j \in H} M_{ij} \cdot L_H^i(X) \cdot L_H^j(Y)$$

Most M_{ij} are zero

Can rewrite as
$$\hat{M}(X,Y) := \sum_{i \in H} \sum_{j \in H} M_{ij} \cdot \frac{v_H(X)}{X-i} \cdot \frac{v_H(Y)}{Y-j}$$
,

Additionally, sum only over non-zero entries!

Let m be the number of non-zero entries, and $K \subset \mathbb{F}$ be a subset of size m. Then, a *sparse* bivariate interpolation of A over K is

$$\hat{M}(X,Y) := \sum_{k \in I \setminus V} \mathsf{v}(k) \cdot \frac{v_H(X)}{X - \mathsf{r}(k)} \cdot \frac{v_H(Y)}{Y - \mathsf{c}(k)}$$

Actually, we need problem on the language of the contract \mathbf{v} with non-zero entry interpolations overely, query, c, û

$$\hat{M}(X,Y) := \sum_{k \in K} \hat{\mathbf{v}}(k) \cdot \frac{v_H(X)}{X - \hat{\mathbf{r}}(k)} \cdot \frac{v_H(Y)}{Y - \hat{\mathbf{c}}(k)}$$

non-zero entry

Let m be the number of non-zero Then, a *sparse* bivariate interpolat

$$\hat{M}(X, Y) := \sum$$
 This is a rational function!

Actually, we need polynomials, so

interpolations over K, i.e. $\hat{\mathbf{r}}, \hat{\mathbf{c}}, \hat{\mathbf{v}}$

$$\hat{M}(X,Y) := \sum_{k \in \mathcal{K}} \hat{\mathbf{v}}(k) \cdot \frac{v_H(X)}{X - \hat{\mathbf{r}}(k)} \cdot \frac{v_H(Y)}{Y - \hat{\mathbf{c}}(k)}$$

Q: How to do this sumcheck?

We only know how to do sumcheck for polynomials!

set of size m.

Let m be the number of non-zero Then, a *sparse* bivariate interpolat

$$\hat{M}(X, Y) := \sum$$
 This is a rational function!

Actually, we need polynomials, so

interpolations over K, i.e. $\hat{\mathbf{r}}, \hat{\mathbf{c}}, \hat{\mathbf{v}}$

$$\hat{M}(X,Y) := \sum_{k \in \mathcal{K}} \hat{\mathbf{v}}(k) \cdot \frac{v_H(X)}{X - \hat{\mathbf{r}}(k)} \cdot \frac{v_H(Y)}{Y - \hat{\mathbf{c}}(k)}$$

Q: How to do this sumcheck?

We only know how to do sumcheck for polynomials!

set of size m.

Let *m* be the number of non-zero Then, a sparse bivariate interpolat

$$\hat{M}(X,Y) := \sum_{k \in \mathbb{Z}} A$$
: interpolate into a polynomial!

Actually, we need polynomials, so

interpolations over K, i.e. $\hat{\mathbf{r}}, \hat{\mathbf{c}}, \hat{\mathbf{v}}$

$$\hat{M}(X,Y) := \sum_{k \in K} \hat{\mathbf{v}}(k) \cdot \frac{v_H(X)}{X - \hat{\mathbf{r}}(k)} \cdot \frac{v_H(Y)}{Y - \hat{\mathbf{c}}(k)}$$

set of size m.

Rational → Polynomial

Key point: just like for other functions, here we $v_{-}(X)$

just care about behavior of
$$\frac{v_H(X)}{X - \hat{\mathbf{r}}(k)}$$
 over H

So we will replace with an interpolation p, and

- 1. Perform sumcheck with p, and
- 2. Check that $p \frac{v_H(X)}{X \hat{\mathbf{r}}(k)} = 0$ over H.

What to do for multilinear case?

Polynomial Interpolation of Matrices?:

Given a list $M \in \mathbb{F}^{n \times n}$, and a set $H \subseteq \mathbb{F}$, the bivariate interpolation of A over H is $\hat{M}(X,Y) := \sum_{i \in H} \sum_{j \in H} M_{ij} \cdot \operatorname{eq}(i,X) \cdot \operatorname{eq}(j,Y)$

Cannot rewrite as
$$\hat{M}(X,Y) := \sum_{i \in H} \sum_{j \in H} M_{ij} \cdot \frac{v_H(X)}{X-i} \cdot \frac{v_H(Y)}{Y-j}$$
!

We can still try to exploit sparsity!

Polynomial Interpolation of Matrices?:

Given a list
$$M \in \mathbb{F}^{n \times n}$$
, and a set $H \subseteq \mathbb{F}$, the bivariate interpolation of A over H is $\hat{M}(X,Y) := \sum_{i \in K} M_k \cdot \operatorname{eq}(i,\mathbf{r}(k)) \cdot \operatorname{eq}(j,\mathbf{c}(k))$

Let m be the number of non-zero entries, and $K \subset \mathbb{F}$ be a subset of size m. Then, a *sparse* bivariate interpolation of A over K is

$$\hat{M}(X,Y) := \sum_{k \in I \setminus V} \mathsf{v}(k) \cdot \frac{v_H(X)}{X - \mathsf{r}(k)} \cdot \frac{v_H(Y)}{Y - \mathsf{c}(k)}$$

Actually, we nee change of the language of the contractions over the contraction of the

$$\hat{M}(X,Y) := \sum_{k \in K} \hat{\mathbf{v}}(k) \cdot \frac{v_H(X)}{X - \hat{\mathbf{r}}(k)} \cdot \frac{v_H(Y)}{Y - \hat{\mathbf{c}}(k)}$$